Dealing With Missing Values in R

 

Dozierende Dr. Julie Josse, CMAP, Ecole Polytechnique, Paris
Abschluss Teilnahmebestätigung
Zielpublikum

Novice and advanced R users from all professional groups.

Kosten
  • CHF 600.- für Angehörige der UZH/ETH und assoziierter Institute
  • CHF 800.- für Alumni der UZH/ETH, Angehörige anderer Universtitäten, Einrichtungen der öffentlichen Hand und non-profit Organisationen
  • CHF 1200.- für Firmen
Personen ohne Anstellung können sich auf Anfrage zum UZH/ETH Preis anmelden.
Kurssprache Englisch
Beschreibung

In many applied settings the data is often incomplete, which makes data analysis a challenging task. There is, however, an abundant literature, as well as more than 150 R packages that address the issue of missing data. This workshop provides a clear overview of the different methods and strategies to handle missing values. The workshop will focuss on (a) the inferential framework that aims to estimate parameters (including their variance) in the presence of missing data, (b) matrix completion methods that aim to impute as well as possible, (c) recent developments in supervised learning in the presence of missing data.

Other topics include:

  • Missing data mechanisms
  • the EM-algorithm
  • Multiple Imputation
  • PCA with missing values/ Imputation with PCA
  • Handling variables of different nature (quantitative, cartegorical, etc.)
  • Prediction with missing values (random forest with missing values)

During the workshop, participants will learn about as well as practice using R packages such as: mice, missMDA, Amelia, etc. All of which can be found on the Rmisstatic https://rmisstastic.netlify.com/ plateform along with a dedicated task view, which aims at giving an overview of main references, contributors, and tutorials on data analysis in the presence of missing data.

Prerequisites

  • Basic familiarity with R syntax
  • Some experience with data analysis in R (loading data, fitting models, using the built-in graphics functions)
  • Familiarity and some practical experience with regression modeling and PCA.
Daten

27.-28. Februar 2020

Anmeldung

  Nach der Anmeldung erhalten Sie zunächst eine kurze automatische Anmeldebestätigung per Email. Wenn Sie diese Email erhalten haben, sind Sie erfolgreich und verbindlich zum Kurs angemeldet. Die schriftliche Rechnung wird aus administrativen Gründen erst ca. zwei Wochen vor Kursbeginn verschickt.